Einstein Solvmanifolds with Free Nilradical

نویسنده

  • Y. Nikolayevsky
چکیده

We classify solvable Lie groups with free nilradical admitting an Einstein left-invariant metric. Any such group is essentially determined by the nilradical of its Lie algebra, which is then called an Einstein nilradical. We show that among the free Lie algebras, there are very few Einstein nilradicals. Except for the one-step (abelian) and the two-step ones, there are only six others: (here f(m, p) is a free p-step Lie algebra on m generators). The reason for that is the inequality-type restrictions on the eigenvalue type of an Einstein nilradical obtained in the paper.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Einstein Solvmanifolds and the Pre-einstein Derivation

An Einstein nilradical is a nilpotent Lie algebra, which can be the nilradical of a metric Einstein solvable Lie algebra. The classification of Riemannian Einstein solvmanifolds (possibly, of all noncompact homogeneous Einstein spaces) can be reduced to determining, which nilpotent Lie algebras are Einstein nilradicals and to finding, for every Einstein nilradical, its Einstein metric solvable ...

متن کامل

ar X iv : m at h / 06 12 11 7 v 1 [ m at h . D G ] 5 D ec 2 00 6 Nilradicals of Einstein solvmanifolds

A Riemannian Einstein solvmanifold is called standard, if the orthogonal complement to the nilradical of its Lie algebra is abelian. No examples of nonstandard solvmanifolds are known. We show that the standardness of an Einstein metric solvable Lie algebra is completely detected by its nilradical and prove that many classes of nilpotent Lie algebras (Einstein nilradicals, algebras with less th...

متن کامل

solvmanifolds with a simple Einstein derivation

The structure of a solvable Lie groups admitting an Einstein left-invariant metric is, in a sense, completely determined by the nilradical of its Lie algebra. We give an easy-to-check necessary and sufficient condition for a nilpotent algebra to be an Einstein nilradical whose Einstein derivation has simple eigenvalues. As an application, we classify filiform Einstein nilradicals (modulo known ...

متن کامل

Noncompact homogeneous Einstein manifolds attached to graded Lie algebras

In this paper, we study the nilradicals of parabolic subalgebras of semisimple Lie algebras and the natural one-dimensional solvable extensions of them. We investigate the structures, curvatures and Einstein conditions of the associated nilmanifolds and solvmanifolds. We show that our solvmanifold is Einstein if the nilradical is of two-step. New examples of Einstein solvmanifolds with three-st...

متن کامل

Einstein Solvmanifolds Attached to Two-step Nilradicals

A Riemannian Einstein solvmanifold (possibly, any noncompact homogeneous Einstein space) is almost completely determined by the nilradical of its Lie algebra. A nilpotent Lie algebra, which can serve as the nilradical of an Einstein metric solvable Lie algebra, is called an Einstein nilradical. Despite a substantial progress towards the understanding of Einstein nilradicals, there is still a la...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006